22 research outputs found

    Architecture of Micro Energy Harvesting Using Hybrid Input of RF, Thermal and Vibration for Semi-Active RFID Tag

    Get PDF
    This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device.This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device

    Design and simulation of tapered optical fiber by enhancing the evanescent field region for sensing application

    Get PDF
    We report the design and simulation of the tapered optical fiber with large presence of the evanescent field. The evanescent field of the optical fiber is strongly affected by the surrounding environment which will be exploited into fabricating variety of photonic-based devices such as photodetectors, optical sensors and ultra-high Q resonators. The simulation results show that by adiabatically tapered the waist region, there is a fairly large amount of evanescent field intensity observed at the air-cladding region. The smooth transition region of the tapered fiber has also minimized the multimode interference in the waist and transition region thus reducing the energy loss and contributing to the higher output power

    Photonic crystal embedded waveguide for compact C-band band-pass filter

    Get PDF
    We report the modelling of a band-pass filter at conventional band (c-band) and the effect of different shapes of photonic crystal (PhC) holes embedded on silicon-on-insulator (SOI) waveguide. The designed embedded waveguides was simulated with LUMERICAL finite different time domain (FDTD) and a filter response with a bandwidth of approximately 30 nm complying with international telecommunication unit (ITU-T) standard was observed. The simulated bandwidth observed was sufficient for guarding against other band interference in telecommunication applications such as wavelength division multiplexing (WDM). The waveguide was designed with a dimension of 600 nm width × 260 nm height and embedded with PhC of 4 mirrors and 3 cavities. 2 mirrors at both end of the whole structure were designed with less number of holes for obtaining the band-pass filter profile. With a value of lattice constant a, hole radius r and cavity distance c of 370, 115 and 315 nm respectively, the simulated device spectrum complimented the erbium doped fiber amplifier (EDFA) spectrum to obtain wavelength profile flatness. The PhC embedded waveguide was tailored to give a 70 percent value of transmission. A flat profile was observed by reducing the photonic crystal hole radii in the middle mirrors. The wavelength band and the bandwidth of the band can be tuned by manipulating the number of mirrors and cavities in waveguide. A different types of PhC hole shapes were also studied and compared. The transmission quality and bandpass quality with different types of hole shapes show that the circular PhC shape are superior in comparison with square hole shapes

    Photonic crystal (PhC) nanowires for infrared photodetectors

    Get PDF
    We report the Photonic Crystal (PhC) nanowires performance for potential phototodetectors integration application. The refractive index of PhC can be tailored to guide specific resonance wavelength precisely. This paper presents the numerical approach of 1D PhC with 12 periodic holes to observe the range of stop band acquired, transmission and the quality factor of the resonance wavelengths. By splitting the holes equally with a range of cavities from 440 to 450 nm, the stop band observed are between 1.5 to 2.1 μm. By varying the cavity length, the value of resonance wavelengths and quality factors observed have also changed. The introduction of 442 nm cavity shows the highest transmission but the lowest Quality factor (Q-factor) where both are observed at 0.87 and 284 respectively. The values indicate a good confinement of light in the waveguide designed thus enabling wavelength selectivity for photodetectors application in highly sensitive wavelength selection application

    Refractive index and sensing of glucose molarities determined using Au-Cr K-SPR at 670/785 nm wavelength

    Get PDF
    In this paper, we determine the optical refractive indices of different molarities of glucose using nano-laminated gold/chromium (Au-Cr) thin film via Kretschmann-based Surface Plasmon Resonance (K-SPR) sensing with angular interrogation. The nano-laminated Au-Cr K-SPR sensor detects the glucose presence in low- and high-concentration of 4-12 mmol/L and 55-277 mmol/L, respectively, under the exposure of 670 nm and 785 nm optical wavelengths. The experimental results showed that the minimum limit of detection (LOD) of Au-Cr K-SPR is 4 mmol/L and the glucose sensor sensitivities are in average of 3.41 o/M and 2.73o/M at 670 nm and 785 nm optical wavelength, respectively. Stable sensitivity for each concentration also shown from the sensorgram results, indicates the stable performance of nano-laminated Au-Cr SPR sensor to detect glucose in the range from mmol/L up to dmol/L. Values of refractive indices for glucose molarities obtained are 1.33187 (4 mmol/L) and 1.3191 (4 mmol/L) at 670 and 785 nm wavelength, respectively. These RI values are beneficial for numerical simulation of glucose sensors using nano-laminated Au-Cr thin films which have been reported for the first time. The sensor can be eventually deployed in integrated photonic sensing devices comprising of multiple analyte detection for lab-on-chip (LoC) and point-of care (PoC) applications

    Molarity Effects of Fe and NaOH on Synthesis and Characterisation of Magnetite (Fe<sub>3</sub>O<sub>4</sub>) Nanoparticles for Potential Application in Magnetic Hyperthermia Therapy

    No full text
    In this study, the effect of molarity on the structural, magnetic, and heat dissipation properties of magnetite nanoparticles (MNPs) was investigated to optimise the parameters for potential application in magnetic hyperthermia therapy (MHT). MHT works based on the principle of local temperature rise at the tumour site by magnetic iron oxide nanoparticles (MIONPs) with the application of an alternating magnetic field. MHT is a safe method for cancer treatment and has minimal or no side effects. Magnetite (Fe3O4) is the best material among MIONPs to be applied in local MHT due to its biocompatibility and high saturation magnetisation value. MNPs were prepared by co-precipitation at varying molarity. Structural characterisation was performed via X-ray powder diffraction (XRD) for crystalline structure analysis and field-emission scanning electron microscopy (FESEM) for morphology and particle size analysis. Measurement of the magnetic properties of the as-synthesised MNPs was carried out using a vibrating sample magnetometer (VSM). Power loss (P) was determined theoretically. The increase in molarity resulted in significant effects on the structural, magnetic, and heat dissipation properties of MNPs. The particle size and saturation magnetisation (Ms) decreased with the gradual addition of base but increased, together with crystallinity, with the gradual addition of iron source. M3 recorded the smallest crystalline size at 3.559 nm. The sample with the highest molarity (M4) displayed the highest heat generation capacity with a p value of up to 0.4056 W/g. High p values at the nano-scale are crucial, especially in local MHT, for effective heat generation, thus proving the importance of molarity as a vital parameter during MNP synthesis

    Sensitivity Enhancement of Heterocore Macrobend Fiber Optics by Adding a ZnO Film

    No full text
    Optical fibers with high sensitivity are in demand due to their great potential in sensor application. Semiconductors, such as ZnO, are good materials. Using them as a second cladding offers opportunities in realizing next-generation multimaterial fiber optics. COMSOL Multiphysics is used to simulate heterocore macrobend fiber optics with the same curvature radius but different values of refractive index and thickness of ZnO films. The optimum thickness of ZnO films is identified by determining the loss of optical fibers. Macrobend heterocore fiber optics by adding ZnO thin film has been established by simulating and interpreting the relationship in terms of transmission and refractive index in the evanescent field. These results will provide a reliable fundamental to guide the performance in practice

    Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation

    No full text
    Nanotechnology has gained much attention for its potential application in medical science. Iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications. In particular, magnetite (Fe3O4) nanoparticles are widely applied due to their biocompatibility, high magnetic susceptibility, chemical stability, innocuousness, high saturation magnetisation, and inexpensiveness. Magnetite (Fe3O4) exhibits superparamagnetism as its size shrinks in the single-domain region to around 20 nm, which is an essential property for use in biomedical applications. In this review, the application of magnetite nanoparticles (MNPs) in the biomedical field based on different synthesis approaches and various surface functionalisation materials was discussed. Firstly, a brief introduction on the MNP properties, such as physical, thermal, magnetic, and optical properties, is provided. Considering that the surface chemistry of MNPs plays an important role in the practical implementation of in vitro and in vivo applications, this review then focuses on several predominant synthesis methods and variations in the synthesis parameters of MNPs. The encapsulation of MNPs with organic and inorganic materials is also discussed. Finally, the most common in vivo and in vitro applications in the biomedical world are elucidated. This review aims to deliver concise information to new researchers in this field, guide them in selecting appropriate synthesis techniques for MNPs, and to enhance the surface chemistry of MNPs for their interests

    Structural and photoluminescence analysis on the implantation of carbon and proton for the creation of damage-assisted emission in silicon

    Get PDF
    We study the induced defects in the depth profiling of the silicon structure after being implanted with carbon and followed by high energy proton irradiation. It has been reported before that the formation of the optically active pointdefect, specifically the G-centre is due to the implantation and irradiation of carbon and proton, respectively. It is crucial to quantify the diffusional broadening of the implanted ion profile especially for proton irradiation process so that the radiation damage evolution can be maximized at the point-defect formation region. Profiling analysis was carried out using computational Stopping and Range of Ions in Matter (SRIM) and Surrey University Sputter Profile Resolution from Energy Deposition (SUSPRE) simulation. The energies of carbon ions adopted for this investigation are 10, 20, 30, and 50 keV, while proton irradiation energy was kept at 2 MeV. Photoluminescence measurements on silicon implanted with carbon at different energies were carried out to study the interrelation between the numbers of vacancies produced during the damage event and the peak emission intensities
    corecore